
A Flexible and Efficient Container-based NFV Platform for
Middlebox Networking

Chao Zheng
IIE, CAS

School of Cyber Security,
UCAS

zhengchao@iie.ac.cn

Qiuwen Lu
∗

IIE, CAS
Qingyun Liu

IIE, CAS

Jia Li
IIE, CAS

Binxing Fang
Institute of Electronic and
Information Engineering of

UESTC in Guangdong

ABSTRACT
Network Function Virtualization (NFV) enables multiple
network functions (NFs) to operate simultaneously on a
commodity server. Internet Data Centers (IDCs) gain sig-
nificant flexibility and agility through NFV’s ability to dy-
namically deploy and terminate virtual NFs. However, NFV
has complicated the middlebox deployment dependence on
topology. In addition, NFV requires dramatically higher
network throughput on commodity hardware. Current ap-
proaches to high performance I/O platforms such as Intel’s
Data Plane Development Kit (DPDK) and Netmap enable
high network throughput, but these were designed for a sin-
gle dedicated NF. To address these issues, we propose a
high-performance platform based on Docker containers and
DPDK for the deployment of multiple virtual middleboxes.
The platform provides NFs with a higher abstraction layer
for the underlying hardware, to facilitate NF deployment,
packet processing, and inter-NF communication. Our eval-
uation shows that the platform provides proper isolation of
NFs with 4% overhead. For a service chain with numbered
NFs, our solution outperforms the Single Root I/O Virtual-
ization (SR-IOV) platform with 7× the throughput.

1. INTRODUCTION
The proliferation of Network Function Virtualization (NFV)
has attracted significant attention by bringing greater open-
ness and agility to network data planes. The NFV network
model focuses on the implementation of software-based net-

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’18, April 9-13, 2018, Pau, France
Copyright 2018 ACM 978-1-4503-4486-9/17/04. . . $15.00
http://dx.doi.org/xx.xxxx/xxxxxxx.xxxxxxx

work functions (NFs) that are run on a virtualized infras-
tructure. This concept enables multiple virtualized NFs to
operate simultaneously on the same high-volume server. As
a consequence, Internet Data Centers (IDCs) have gained
significant flexibility and agility because of their ability to
dynamically deploy and terminate virtual NFs. When mul-
tiple NFs run simultaneously and each of these processes a
large volume of network traffic, network I/O performance is
a concern. To address this concern, hardware and software
techniques are adopted to enhance NF performance, includ-
ing Single Root I/O Virtualization (SR-IOV), Open vSwitch
[9], Intel Data Plane Development Kit (DPDK) [3], and Vir-
tio [11]. These approaches mainly focus on optimizing the
end host’s network performance and, in particular, switching
packets to different virtual machines (VMs) efficiently. How-
ever, middleboxes like firewalls, Intrusion Detection Systems
(IDSs), Deep Packet Inspection filters (DPIs), and Data
Leakage Prevention systems (DLPs), which often share the
same packets or forward packets to one another, can also run
on the same hypervisor, and their special needs are rarely
considered.

In this paper, we describe and evaluate the Multiple Vir-
tual Middlebox Platform (MVMP), an NFV platform that
is based on Docker containers and Intel’s DPDK, extended
to support flexible deployment, fault isolation, and interop-
erability of multiple NFs. MVMP provides a higher-level ab-
straction to facilitate packet processing by multiple middle-
boxes on one hypervisor, particularly addressing the needs
of DPIs and IDSs. The platform runs as a daemon in Linux,
and each NF is packaged as a Docker container for easy de-
ployment and resource isolation. MVMP takes advantage
of DPDK’s high-throughput packet processing capabilities,
so that NFs on the MVMP platform can work at line speed
(10Gbps) using commodity hardware.

In this work, we focus on three network virtualization capa-
bilities:

The flexibility to create and deploy NFs in different en-
vironments. Modern IDCs apply techniques such as the
Virtual Extensible LAN (VXLAN) or the Network Virtu-

alization using Generic Routing Encapsulation (NVGRE)
to create a huge virtualized Layer 2 network, basically by
wrapping an IP header around the tenant’s packet. How-
ever, in practice, this complicates the deployment of passive
network traffic analyzers such as IDSs and DPIs, as they
must be deployed at specific positions to access unwrapped
traffic. Our major concern is to allow NF deployment to be
independent of the details of the underlying network.

The efficiency of inter-NF communication. Middleboxes
like IDSs and DLPs are often deployed together and share
traffic to achieve the best protection. In addition, NFs must
be able to migrate packets to each other. For example, a
router may forward specific packets to an Intrusion Preven-
tion system (IPS) when it is under a Distributed Denial of
Service (DDOS) attack, and the IPS must decide whether
the packet needs to be allowed through or throttled. We
seek to meet the efficiency requirement in MVMP by pro-
viding an efficient forwarding mechanism that does not copy
packets.

The robustness of the platform. It should be able to iso-
late NF failures, e.g., random crashing, and prevent mu-
tual interference. An NF like a DPI with an experimental
module may be very unstable, and some unforeseen flows
might crash the NF. Worse yet, a packet buffer that is shared
among NFs might be overwritten.

To provide the desired capabilities, MVMP includes the fol-
lowing innovations:

1. A container-based platform for flexible middlebox deploy-
ment that combines Docker containers and DPDK. More-
over, it can match the performance requirements on cus-
tomized hardware.

2. A network interface abstraction layer that shields NFs
from the details of the underlying network and hardware.
For example, if a DPI wants to access unwrapped pack-
ets in a VXLAN environment, a VXLAN gateway can be
deployed upstream to decapsulate the packets. In addi-
tion, the virtual device concept in the abstraction layer
simplifies the organization of NFs in a service chain.

3. A shared-memory mechanism that allows NFs running on
the same hypervisor to share and forward network traffic
efficiently and still retain the necessary protection.

We compare MVMP with the NFV platforms SR-IOV and
OpenNetVM [14], a state-of-the-art NFV platform. In a
service chain experiment using 5 NFs, MVMP throughput
outperformed SR-IOV and OpenNetVM by as much as 7×
and 3×, respectively.

2. CONSTRAINTS AND RATIONALE
The operating environment for a virtual NF is different from
that of a traditional network appliance. In what follows,
we briefly discuss constraints and challenges stemming from
these differences, both to reveal the rationale behind the
design choices of MVMP and to highlight what makes it
unique.

2.1 Traditional Middleboxes vs. NFV Mid-
dleboxes

In traditional networks, a service chain includes a set of net-
work appliances offering services such as load balancers, fire-
walls, DPIs, IDSs, and more, to support dedicated network-
ing processing and applications. An NFV-based middlebox
must offer functionality and semantics equivalent to those of
an onsite middlebox—i.e., firewalls must drop packets cor-
rectly, IDSs must trigger identical alarms, etc. In contrast
to traditional endpoint applications, this is challenging be-
cause middlebox functionality is usually dependent on the
network topology.

As Han [4] summarized, NFV poses several challenges and
opportunities for network operators, such as a network per-
formance guarantee for virtual appliances, their dynamic in-
stantiation and migration, and their efficient placement. In
addition, NFV complicates the middlebox deployment de-
pendence on topology. For geographically distributed net-
works, NFV uses a series of new technologies to decouple
NFs from their location. These technologies all introduce
new tags or new wraps in packets and new translation end-
points. For example, VXLAN [6] adopts VXLAN tags and
VXLAN Tunnel End Points (VTEPs), and NVGRE [12]
uses a similar idea. Middleboxes’ deployment locations are
constrained , as they must access unwrapped network traf-
fic. Furthermore, as multiple middleboxes in a service chain
share the same hardware and network flow, researchers have
an opportunity to optimize the traffic scheduling. Packet
forwarding on the same hypervisor could be performed in
memory instead of sending the packets through network in-
terface cards (NICs) and switches, and so could traffic shar-
ing among NFs.

OpenNetVM provides a mechanism for steering network traf-
fic between NFs. It uses a flow table that directs packets
between the NFs in service chains; this table can be config-
ured dynamically by NFs. However, the solution of steering
traffic with a flow table is not adequate. First, placement of
modern NFs on the network topology is complicated, as they
can be inline—e.g., routers—or bypass—e.g., DPIs. For a
service chain containing the two types of NFs, routing pack-
ets based on a flow table can be intricate. Second, packets
in a service chain are not only forwarded through NFs, but
also modified. To process packets from VXLAN, for exam-
ple, an NF that is upstream of a service chain may need to
decapsulate the packet before forwarding it. MVMP solves
these problems by providing an abstract network interface
layer.

2.2 Fast-packet I/O vs. Isolation
Network performance for NFs on Commercial Off-The-Shelf
(COTS) hardware has been a concern since long before NFV
emerged. Several technologies have been developed to achieve
fast I/O on COTS hardware, such as Intel’s DPDK, Netmap
[10], and PF_RING [2]. Among these technologies, the authors
chose DPDK as the I/O infrastructure for MVMP. As a fast
user-space packet I/O engine, its performance and stability
have been proven by researchers and companies. Compared
to Netmap and PF_RING, DPDK supports more hardware and
has a thriving community of users.

DPDK is a set of data plane libraries and network inter-
face controller drivers for fast packet processing with an in-
expensive, commodity X86 server [13]. DPDK implements
a low overhead Run-to-Completion (RTC) model for fast
data plane performance and accesses devices via polling to
eliminate the performance overhead of interrupt processing.
DPDK provides many data structures for developing high
performance NFs.

There are two programming models for middleboxes, namely,
RTC and pipelining. Figure 1 intuitively presents the two
models. RTC is the classical fast-packet processing model,
and most of the DPDK demos and benchmarks are written
in accordance with the RTC model, e.g., l2fwd and l3fwd.
In RTC, each cycle consists of packets being received by the
Poll Mode Driver (PMD) and a series of callbacks. For ex-
ample, a firewall programmed with the RTC model starts
its packet processing cycle by acquiring a packet via the
PMD, then examines the packet header and content, and
ends with an action of either forwarding or discarding the
packet, based on the result of the examination. The pipeline
programming model uses queues to transfer packets through
different cores. For example, a firewall programmed with
a pipeline has a packet-receiving thread, an examination
thread, and a forwarding thread, which communicate with
each other through lockless queues. This gives users the
flexibility to develop asynchronous applications.

Along with other fast packet I/O technologies, DPDK was
designed mainly for a single NF. Thus, developers need to do
extra work to deploy multiple tenants that share the same
NIC on one hypervisor. Basically, there are three possible
ways to develop an NFV platform that supports multiple
tenants. First, NFs can be carefully crafted to callback style
and integrated with an RTC process, which is inconvenient
and fragile. Second, SR-IOV can be used to allow multi-
ple processes to acquire packets from one physical interface.
The shortcoming of this method is that packet switching
can only be performed based on the Layer 2 address. Third,
a shared-memory-based pipeline can be used, in which one
producer process moves packets from the NIC to the pipeline
and several consumer processes properly handle these pack-
ets. This method is flexible and efficient enough to build a
multi-tenant platform and can also provide proper isolation
between NFs.

However, in a production environment, multi-process appli-
cations like those built using the third of these methods have
to deal carefully with inter-process synchronization. This
is because processes communicate by a huge shared page
memory, which is delicate and fragile. If a consumer process
randomly crashes, the status of shared memory may be cor-
rupted. This should not be a problem if there is only one
consumer, for we can simply reboot the producer to retrieve
a correct status. But when there are a number of consumers,
rebooting is infeasible. Therefore, MVMP adopts a shared-
memory framework that retains the necessary isolation be-
tween NFs.

3. SYSTEM DESIGN
As shown in Figure 2, the MVMP architecture consists of
a virtual device abstraction, a shared memory mechanism,

NIC

DPDK PMD

packet

VNF1

VNF2

packet

VNF1

VNF2

NIC

DPDK PMD

packet

VNF2VNF1

(a) run-to-complete (b) pipeline

ring

Figure 1: Two programming models for packet processing.

NIC 2

container

NF1

mvAPI

container

NF2

mvAPI

Shared Memory

packet

NF3

mvAPI

MVMP Daemon

R T

NF private

Platform private Public
rings

NIC 1

R T

tx buffer

Control Plane

ARP

Unix Domain

Socket

stat

Policy(DPDK)threads

VD1 VD2 VD3

container

Figure 2: An overview of MVMP.

and a control plane. The platform runs as a Linux daemon;
it has several work threads that poll packets from NICs with
DPDK’s PMD and then dispatches them to virtual devices.
Packet buffers reside in the shared memory, which allows
access by multiple NFs in different processes. Each NF runs
as a user-space process inside a Docker container instead of
a VM, which makes them lighter weight and still isolated.
The NFs send and receive packets by invoking mvAPI (short
for MVMP API), which allows an NF to receive multiple
packets during one invocation, so NFs can use batching to
amortize costs. The control plane is used for NF status and
ARP table maintenance.

Figure 2 depicts a service chain built by three NFs. A fire-
wall (NF1) is deployed as an inline NF that handles packets
through a virtual device (VD1). The packet buffer resides
in the shared memory. A DPI (NF2) intercepts at VD1
and works as a bypass NF, sending suspicious traffic to an
IPS (NF3) through a virtual device (VD2) that does not
map to any physical NIC. The IPS (NF3) builds a TCP re-
set packet with a buffer in shared memory and injects the
packet through VD3 to stop malicious connections.

3.1 Virtual Devices
It is common for a hypervisor to have several NICs to in-
crease port density. The NICs are grouped with different
logics to accomplish different middlebox functions. Usually,

there are three primary ways to organize NICs. First, a
single NIC can be used as a single device, e.g., one-armed
routers and IDSs. Second, NICs can be bonded to increase
the available bandwidth, e.g., Content Delivery Network
(CDN). Third, NICs can be bridged for forwarding, e.g.,
firewalls and routers. In addition, the network traffic of one
NIC may be load balanced to or shared by multiple NFs.
For example, an IDS will need to share a firewall’s traffic to
detect potential threats.

Focusing on these requirements, we propose a virtualization
layer on top of DPDK. The virtualization layer abstracts
from the physical NICs and anchors the NFs to the virtual-
ized device. This ensures that NF lifecycles are independent
of the allocation and organization of underlying NICs. The
NICs, virtual devices, and NFs are organized in accordance
with the following principles:

1. A virtual device is an abstraction of N NICs, N ≥ 0.

2. If N > 0, the NICs are organized as bonded, bridged, or
directly connected.

3. If N = 0 , the virtual device works like a bidirectional
queue, namely, a rootless device. The rootless device en-
ables inter-NF communication.

4. One physical NIC can belong to multiple virtual devices.

5. One virtual device can be opened by multiple NFs and
receive duplicate inbound traffic.

6. One NF can open multiple virtual devices.

Figure 3 illustrates a use of MVMP that includes five NFs
and two service chains.

Packets initially arrive in a queue on an NIC port, and then
the worker threads invoke DPDK’s PMD, which ensures that
packet data are stored directly into the shared memory pool
through Direct Memory Access (DMA). The worker threads
are a part of the MVMP daemon; their number depends on
the workload. These threads examine packets individually
to decide which virtual devices they should be dispatched
to, based on a set of predefined policies. Note that only
the packet descriptor is copied and placed in the virtual
device’s receive queue. The dispatching policies describe
which packets a virtual device will receive and how they are
encapsulated and decapsulated. In more detail, the policies
are as follows:

• Receiving policies describe desired packets, including
the protocol, address, and port and combinations thereof.

• Packets’ encapsulation and decapsulation instructions
are used for stateless protocols, e.g., jump over the
VLAN and GRE tags and deliver to the DPI with an
inner IPv4 header. Because passive analyzers such as
DPIs and IDSs usually don’t send packets, they may
be more portable because they do not need to deal
with the encapsulating tags.

• Sending policies describe which NIC to use. For exam-
ple, a bonded device may choose NICs in a round-robin
fashion, while a bridged device may direct packets to
the opposite NIC from which it was received.

bridge0 direct0bond0 virt0

VX GW

Network Functions
IDS DPI Firewall

virt1

IPS

Physical NICs

Virtual Interface Layer

1 2 3 4 5

Figure 3: Example of NIC organization: A VXLAN Gate-
way (VX GW) translates traffic through two bridged NICs,
an IDS inspects three NICs’ inbound and outbound traffic
and sends some suspicious traffic to a DPI through virt0, and
a firewall filters the packets of one NIC and also cooperates
with an IPS through virt1.

Table 1: Policy maps for NICs and virtual devices

bridge0 bond0 direct0

NIC1 VXLAN

NIC2 192.168.0.0/16 192.168.0.0/8

NIC3 all

NIC4 all

NIC5 vlan1/2

Table 1 shows the dispatching policy for Figure 3: the virtual
devices declare their receive policies in columns, and the
MVMP daemon executes the policies by row.

From the perspective of the platform, each NF has an in-
dependent instance of a virtual device, and the platform
adds the packet descriptor to the instance’s receive queue,
thereby allowing an authorized NF to have a full view of
the virtual device’s traffic. A service chain is self-organizing
by NFs forwarding and receiving packets through a rootless
virtual device. NFs steer traffic by choosing a virtual de-
vice to forward each packet to. An upstream NF such as a
router mitigates DDoS flooding traffic to IPSs. Forwarding
is accomplished by NFs instead of the platform.

3.2 Shared memory framework
A typical DPDK pipeline application is constructed by a
huge shared page memory pool and a circular queue. The
platform cores move packets from NICs to shared memory
via DMA and then deliver the pointer to the packet buffer
to the NF cores by rte_ring. After handling the packet
appropriately, the NFs will restore the buffer to the original
memory pool. This procedure, which is shown in Figure
4(a), works fine for a single process.

The problem comes when there are multiple separate NF
processes. First, if one NF crashes while restoring the packet
buffer, this may corrupt the memory pool and jam the plat-
form and other NFs. Second, both the platform and the NFs
operating on the memory pool will cause more write con-
tentions, which will decrease performance. Third, a shared
packet might be overwritten by a careless NF, which could
be a security concern.

(a) Restore by NF (b) Restore by Platform

NIC
NFNFDMA

free

alloc
m

em

DPDK

rte_ring

SharedMem
huge page blocks

NIC
NFNFDMA

free

alloc

m
em

DPDK

rte_ring

SharedMem
huge page blocks

Platform Platform

Figure 4: Two methods for restoring a packet buffer.

To address these problems, we assigned a dedicated ring to
each NF to restore the packet buffer. As shown in Fig-
ure 4(b), each NF places the buffer descriptor in its dedi-
cated ring, and then the platform restores the buffer to the
memory pool. For a single consumer and single producer
scenario, rte_ring is lockless. Moreover, since the NFs no
longer directly operate on the memory pool, it is possible to
set packet buffers as read-only for non-trusted NFs, thereby
avoiding unintentional overwrites. In this way, all three of
the aforementioned problems are solved. As shown in Figure
2, the global shared memory can be partitioned into three
categories based on the NFs’ access privileges (note that the
platform has full control of the entire memory):

1. Platform private memory is used for platform DMA
packet data from NICs and is read-only to NFs.

2. Each NF has an NF private memory, which is used for
constructing packets without a memory copy. The owner
is permitted to read and write to other NFs depending
on a memory view authorization table, where authorized
NFs have the privilege to read/write/allocate/deallocate
private memory space. The platform also uses this mem-
ory to clone indirect packets, so that NFs can operate on
the offset of the packet buffer and skip protocol headers.

3. Public memory is used to transfer packet descriptors,
through queues and rings. NFs can access this memory
with mvAPI.

3.3 Control plane
MVMP uses UNIX named domain sockets for communica-
tion with NFs, such as NF statuses and control messages.
After initializing the platform daemon, MVMP starts a thread
that listens on a UNIX domain socket for new NF connec-
tions. NFs use this connection to notify the platform which
virtual device to open, with configurations like that in Ta-
ble 1 and heartbeat messages. When a guest NF is in a
deadlock or has crashed, MVMP should inform each virtual
device and recycle resources. A closing or SIGPIPE event
for that connection indicates an NF failure, so that the plat-
form can inform each virtual device and do some cleanup. If
an NF works on Layer 3, e.g., as a proxy, it needs to perform
an ARP resolution. Since virtual devices are shared by mul-
tiple NFs, the ARP operation is processed by the platform,
and the ARP cache is synchronized with the connections be-
tween NFs and the platform. When an NF fails to look up an
entry from the ARP cache, a control message is sent to the

64 128 200 256 300 512 750 1024 1456 1518
Packet Size(byte)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
hr

ou
gh

pu
t(

M
pp

s)

Line Rate

DPDK L2FWD
MVMP
OpenNetVM

Figure 5: Forwarding performance for different packet sizes,
both using two logical CPU cores.

platform. After the platform completes the ARP request,
the NF’s ARP cache will be updated by the next message.
In conclusion, MVMP uses control messages to synchronize
NFs’ dynamic structures instead of using shared memory,
and this method is briefer and simpler.

4. EVALUATION
In this section, we evaluate MVMP’s performance with re-
spect to traffic duplication and forwarding, which are used
for bypassed and inlined NFs, respectively. We evaluate
MVMP’s service chain performance by comparing it with
SR-IOV and OpenNetVM. All three approches were deployed
on a commodity server with an Intel Xeon CPU E5-2650 v2
@ 2.60GHz (16 physical cores, 16×2 logical cores), a 64GB
DDR3 1333Mhz memory, and an Intel 82599ES 10G NIC.
The server runs Linux CentOS 7.2 (kernel 3.10.0). We used
an IXIA traffic generator [1] for packet generation.

4.1 Overhead
Packet Forwarding: As MVMP uses extra rings to deliver
packets, we evaluated the overhead by running a packet-
forwarding NF. Both MVMP and OpenNetVM use two log-
ical CPU cores, one for the daemon and another for the NF.
DPDK l2fwd uses two logical CPU cores. Figure 5 shows
that l2fwd reaches 14.3 million packets per second (Mpps)
when forwarding 64-byte packets, MVMP sees no drop, and
the number of packets processed by OpenNetVM falls by
30%. For 128-byte and larger packets, all approaches could
saturate the 10GbE link.

Packet Duplication: MVMP facilitates traffic sharing by
allowing multiple NFs to open the same virtual device, with
a packet descriptor distributed to each NF’s lockless rings.
Since OpenNetVM does not support traffic duplication, only
MVMP was evaluated for this case. In this experiment, the
MVMP daemon uses two logical cores and assigns one logical
core to each NF. As Figure 6(a) shows, as the number of NFs
increases, the throughput decreases. The profiler tool shows
that massive enqueuing and dequeuing in the lockless rings
is responsible for the runtime overhead. After we increased
the packet size to 256 bytes (Figure 6(b)), MVMP could

1 2 3 4
NF number

0

5

10

15

20
T

hr
ou

gh
pu

t(
M

pp
s)

Line Rate

Throughtput
Latency

0

20

40

60

80

100

L
at

en
cy

(µ
s)

(a) 64-byte packet

1 2 3 4
NF number

0

1

2

3

4

5

6

T
hr

ou
gh

pu
t(

M
pp

s) Line Rate

Throughtput
Latency

0

20

40

60

80

100

L
at

en
cy

(µ
s)

(b) 256-byte packet

Figure 6: Virtual device sharing performance.

saturate the bandwidth, which can be attributed to the fact
that only the packet descriptor is copied.

4.2 Service Chain Performance
To evaluate the inter-NF communication performance, we
built a service chain containing k NFs and k -1 rootless de-
vices. The first NF receives a packet from one virtual device
and delivers it to the next NF with one rootless device, and
so on, until the last NF sends the packet out. OpenNetVM
was set to the same configuration with its auxiliary script.
To make a fair comparison, we disabled its flow table. For
SR-IOV, we created k virtual NICs and had a process con-
duct a similar forward function by rewriting MAC addresses.

Figure 7 shows how the throughput for 64-byte packets changed
as we adjusted the chain length. With a single NF, MVMP’s
and OpenNetVM’s throughputs were consistent with Figure
5 (64-byte). As the number of NFs increased, MVMP was
able to retain a stable speed. In contrast, the throughputs
of OpenNetVM and SR-IOV dropped with more chained
NFs. In particular, at five NFs, MVMP outperformed Open-
NetVM and SR-IOV by as much as 3× and 7×, respec-
tively. We believe that SR-IOV’s inter-NF packet delivery
performance decreased because of data copying costs and
PCI communication.

5. RELATED WORK
E2 [8] is a framework for end-to-end orchestration of mid-
dleboxes. E2 steers traffic across appropriate NF instances
with a predefined directed acyclic graph. However, the sys-
tem is not flexible enough to deal with automatically trig-
gered forwarding. mSwitch [5] is an implementation of soft-
ware packet switching on a data plane. It is designed for
the network performance of virtual machines, but not for
multiple-NF service chains. ClickOS [7] has been proposed
as a framework for NF deployment on a commodity plat-
form; it focuses on efficient packet delivery through a hyper-
visor and virtual machines. OpenNetVM [14] was designed
for high-perfomance service chains and deploys NFs in con-

1 2 3 4 5
Number of Chained NF

0.0

2.5

5.0

7.5

10.0

12.5

15.0
T

hr
ou

gh
pu

t(
M

pp
s)

Line Rate

MVMP
OpenNetVM
SR-IOV

Figure 7: Service chain performance, 64-byte packet.

tainers. The difference between OpenNetVM and MVMP
lies in how they steer traffic. OpenNetVM uses a flow table
and an additional thread to move packets through NFs. In
contrast, MVMP provides a virtual device abstraction that
allows NFs to define their own input and output and thus
connect with each other. In a service chain that combines
inline NFs and bypass NFs, the virtual device abstraction is
more concise than a flow table.

6. CONCLUSION
MVMP is a packet-processing platform for multiple mid-
dlebox networking. Our work focuses on deployment flex-
ibility, inter-NF communication efficiency, and fault isola-
tion. MVMP adopts a virtual device abstraction to decou-
ple NFs from the underlying network topology. In addition,
this abstraction makes inter-NF communication much eas-
ier. Based on Docker containers, DPDK, and a fine-grained
shared-memory mechanism, MVMP can provide both proper
fault isolation and high I/O performance. Our evaluation
shows that MVMP can forward packets at 14.3Mpps (96% of

the line rate) with one physical core (two logical cores). Our
service chain experiment with five NFs shows that MVMP
outperforms OpenNetVM by as much as 3×. Furthermore,
while MVMP provides deployment flexibility and fault iso-
lation, it retains ideal performance regarding traffic dupli-
cation and service chains.

7. REFERENCES
[1] I. BreakingPoint.

https://www.ixiacom.com/products/breakingpoint.

[2] L. Deri et al. Improving passive packet capture:
Beyond device polling. In Proceedings of SANE,
volume 2004, pages 85–93. Amsterdam, Netherlands,
2004.

[3] DPDK.org. Data plane development kit, 2014.

[4] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee.
Network function virtualization: Challenges and
opportunities for innovations. IEEE Communications
Magazine, 53(2):90–97, 2015.

[5] M. Honda, F. Huici, G. Lettieri, and L. Rizzo.
mswitch: a highly-scalable, modular software switch.
In Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research, page 1.
ACM, 2015.

[6] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,
L. Kreeger, T. Sridhar, M. Bursell, and C. Wright.
Virtual extensible local area network (vxlan): A
framework for overlaying virtualized layer 2 networks
over layer 3 networks. Technical report, 2014.

[7] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu,
M. Honda, R. Bifulco, and F. Huici. Clickos and the
art of network function virtualization. In Proceedings

of the 11th USENIX Conference on Networked
Systems Design and Implementation, pages 459–473.
USENIX Association, 2014.

[8] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda,
S. Ratnasamy, L. Rizzo, and S. Shenker. E2: a
framework for nfv applications. In Proceedings of the
25th Symposium on Operating Systems Principles,
pages 121–136. ACM, 2015.

[9] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson,
A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, et al. The design and implementation of
open vswitch. In NSDI, pages 117–130, 2015.

[10] L. Rizzo. Netmap: a novel framework for fast packet
i/o. In 21st USENIX Security Symposium (USENIX
Security 12), pages 101–112, 2012.

[11] R. Russell. virtio: towards a de-facto standard for
virtual i/o devices. ACM SIGOPS Operating Systems
Review, 42(5):95–103, 2008.

[12] M. Sridharan, A. Greenberg, N. Venkataramiah,
Y. Wang, K. Duda, I. Ganga, G. Lin, M. Pearson,
P. Thaler, and C. Tumuluri. Nvgre: Network
virtualization using generic routing encapsulation.
IETF draft, 2011.

[13] Wikipedia.
https://en.wikipedia.org/wiki/data plane development kit.

[14] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato,
G. Todeschi, K. Ramakrishnan, and T. Wood.
Opennetvm: A platform for high performance network
service chains. In Proceedings of the 2016 workshop on
Hot topics in Middleboxes and Network Function

Virtualization, pages 26–31. ACM, 2016.

